
 

 

  
    Abstract—Zona pellucida (ZP) is a 3D matrix that surrounds 
mammalian oocytes and embryo until the stage of early blastocyst. 
This structure is important for fertilization, polyspermy block, 
integrity of the growing embryo, guiding the embryo through the 
oviduct. In the late blastocyst stage, this structure no longer exists. 
During oocyte maturation, fertilization and embryo development ZP 
dynamically changes its elasticity. To explain elasticity change of 
mouse ZP (mZP) during these processes, a discrete fractional order 
spherical net model of mZP is developed. Elements in the model 
correspond to ZP glycoproteins that are interconnected with standard 
light fractional order elements. This model is suitable for modelling 
different states of the ZP net. Using the part of the ZP spherical net 
model that still preserves the molar ratio of ZP glycoproteins, we 
determined characteristic eigen numbers of eigen fractional order 
oscillations and eigen modes for each chain. Analytical expressions 
for mechanical energy of the representative part of the ZP net before 
and after fertilization are defined. Generalised function of energy 
dissipation for the representative part of the ZP net as well as for the 
whole ZP net was created. We discussed dynamical change of 
elasticity of the mZP and dissipation of its energy after fertilisation in 
biological context. 
 

Keywords—Fractional order model of the Zona Pellucida, 
generalized function of fractional order dissipation, dissipation of 
energy, energy state of the Zona Pelucida.  
 

 

I. INTRODUCTION 
ona pellucida (ZP) is a 3D acellular matrix that surrounds 
mammalian oocytes and embryo until the stage of early 
blastocyst. 

It plays an important role in oogenesis, sperm-egg 
interactions development of embryo in vivo, and during a 
preimplantation period [1], [2]. Naked eggs transplanted to the 
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oviduct may adhere to its walls, ZP makes it possible for the 
cleaving eggs to move freely along the oviduct [3].  

“The cell association of zona-free embryos at the 4-cell 
stage influences differentiation of cells“ [4]. The mouse ZP 
consists of three sulfated glycoproteins: ZP1, ZP2, and ZP3. 
The ratio of ZP2/ZP3 in mice is close to 1:1, whereas ZP1/ 
(ZP2-ZP3) is 1:5 [1]. These proteins are secreted by the 
developing oocyte and assembled in the 3D matrix at the 
outher surface of the cell. Each of these mouse ZP (mZP) 
glycoproteins has its special function and is essential for 
normal fertility and function of mZP [2]. ZP dynamically 
changes its thickness and volume during oocye maturation, 
fertilization and early embryo development [5]. It is the 
thickest in fully grown oocyte [1]. Except changing in 
thickness during these phases, ZP changes its structure [6], [7] 
and elasticity [8]-[10]. 

Scanning electron microscopy analysis shows that this 
porous structure changes a number and a mean diameter of 
pores before and after fertilization. The maximal mean 
diameter of the pores is in zygote and minimal in morula. The 
larger number of the pores is the smallest of the mean 
diameter of the pores [7]. After the fertilization, the Young 
modulus of ZP has approximately 2.5 times higher values 
compare to mature oocyte, no matter with what technique it 
was obtained [8]-[10]. After the fertilization, until the morula 
stage of the embryo, the Young modulus of mZP decreases 
[8]. This so called ‘hardening’ of mZP of the embryo plays an 
important role in polispermy block: when one sperm 
penetrates and fertilize the oocyte, it reacts by the cortical 
reaction preventing other sperm to penetrate the oocyte. This 
‘hardening’ phenomenon is used in the farm industry for 
hardenig ZP of unfertilized eggs to reduce the polyspermic 
fertilization in pigs and cows [11].  

Considering the fertilization process as an oscillatory 
phenomenon, and the mZP as an oscillatory structure, we 
supposed that the oocyte and embryo are in different 
oscillatory states [12] and that the whole cell and ZP structure 
have different energies. 

The aim of this study is to analyze the energy state of the 
mouse zona pellucida before and after fertilization. To obtain 
energy analysis, a discrete fractional order spherical net model 
of the mouse ZP has been created. It is a modified oscillatory 
model of mZP [13]. Modification of the model is in way of 
coupling the material particles (ZP glycoproteins). In the 
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fractional order spherical net model of mZP, ZP glycoproteins 
are interconnected with standard light fractional order 
elements (SLFOE) forming circular and meridian chains. Each 
glycoprotein is also connected to the surface of the oocyte 
with SLFOE (Fig. 1a and b). The net is identical in the circular 
and meridian directions. Chains are orthogonal. In the model, 
each ZP molecule can move in 2 directions: in radial and in 
the direction of the chain - circular or meridian. Exceptions 
are knot molecules that can move in all three directions. 

Using the representative part of the spherical mZP net (Fig. 
2), we calculate its mechanical energy as well as for the whole 
mZP net. Representative part of the mZP net is repeated in the 
spherical net, and it has been considered the smallest part of 
the net that still preserves the molar ratio of mZP 
glycoproteins [1]. This part consists of 4 crossed chains, each 
of 11 material particles (Fig. 2). ZP 1 (Orange) represents knot 
molecules in the model. 

Using the data of oscillations of fractional order chains 
[14]-[24] and ideal elastic non-homogeneous chains [25,26], 
we determined eigen characteristic numbers of eigen fractional 
order oscillations and corresponding main eigen modes for 
each chain in the representative part. 

The fractional order spherical net model of mZP is a non-
conservative oscillatory model. Analytical expressions for 
potential and kinetic energy were determined. The generalized 
function of the fractional order dissipation of mechanical 
energy was defined. This function describes the dissipation of 
the total mechanical energy of the mZP in different oscillatory 
states (before and after fertilization). 
    In order to define the total mechanical energy of the mZP, 
we defined first the energy of dilatation of a single standard 
light fractional order element, the energy of a single non-
homogeneous chain of 11 material particles and the energy of 
all four chains in the representative part of the mZP. 

In order to model viscoelastic properties in the ZP structure 
after fertilization with due account for elastic to plastic 
transition [9], we found the fractional calculus to be a useful 
tool. Our conclusion is supported by numerous publications 
utilizing the fractional order calculus in different fields of 
science. The state-of-the-art articles by Rossikhin and 
Shitikova [30]-[33] are bright examples of fractional calculus 
applications in mechanics of solids and structures.  
 

II. POTENTIAL ENERGY OF THE REPRESENTATIVE PART OF THE 
MZP NET 

 
  The elongation of a standard light fractional order element 

that interconnects two molecules (material particles) with 
displacements ( )kx t  and 1( )kx t+  could be described as 

( ) ( ) ( )1, 1k k k kx t x t x t+ +∆ = − , 0,1,2,3,...,11,12k = , where k  and 
1k +  are the orders of material particles in the chain, and 

0( ) 0x t =  and 12 ( ) 0x t =  are boundary conditions of the chains. 
The constitutive generalized force – extension relation of the 
standard light fractional order element is described by the 
fractional derivative Kelvin-Voigt model:  
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Fig. 1 (a) Part of the ZP spherical net model as a part of the sphere 
(oocite). Orange (ZP1), blue (ZP2) and green (ZP3) represent ZP 
proteins. Net is identical in circular and meridian directions. An axis 
shows the direction of movements of ZP proteins. Each ZP protein is 
connected to the sphere with standard light visco-elastic elements of 
fractional order (SLFOE) that can oscillate in the radial direction, 
and (b) Schematic presentation of the fractional order viscoelastic 
element as a part of the Zona Pelucida model 
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0( ) 0x t =  and 12( ) 0x t = , 0,1,2,...,11,12k = .                      (1) 
 
where [ ]tDα •  is the fractional α -order differential operator of 
with respect to time t of the following form: 
 

[ ] [ ]
( )

[ ]
( )0

1 ,
1

t

t
d dD d

dtdt t

α
α

α α τ
α τ

• •
• = =

Γ − −∫
            (2) 

 
( )1 αΓ −  is the Euler Gamma function, 0 1α< ≤ , ( )0 , 1k kc +  and 

( ), 1k kcα +  are rigidity coefficients, in so doing ( )0 , 1k kc +  are 

prolonged moduli of elasticity, ( ) ( ), 1 0 , 1k k k kc cα
α τ+ += , and τ is 

the retardation time.  
    At 1=α , the Voigt model (1) with a fractional time-
derivative (2), i.e. the generalized Voigt model, goes over into 
the Voigt model with a conventional time-derivative, i.e. the 
classical Voigt model, since the Riemann-Liouville fractional 
derivative (2) goes over into the conventional first-order 
derivative with respect to time t. At 0=α , the generalized 
Voigt model (1) loses the physical sense (see the paper of the  
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Figure 2. A representative part of the sphere surface net 
model of mZP: Orange (ZP1)-knot molecules in cross section 
of the chains, blue (ZP2) - (2,4,6,8, and 10 molecule in chain)  
and green (ZP3) - (1,5,7, and 11 molecule in chain) represents 
ZP proteins. ZP proteins are interconnected by standard light 
visco-elastic elements of fractional order, 

km  is a mass of the 
ZP glycoprotein, 

kc is the rigidity, 
kx  are the displacements of 

mass particles interconnected by SLFOE in the circular 
direction, 

ky  are the displacements of mass particles 
interconnected of SLFOE in the meridian direction. Numbers 
in the corners (1-4) denotes position of the knot molecules in 
the representative part of the mZP net, at cross section 
between two chains in orthogonal directions.  
 
 
Guest Editors of this Special Issue [34], as well as their state-
of-the-art article [30] for details). 
     The fractional order element (Fig. 1b) possesses the 
potential energy , , 1,0 1p k k α+ < ≤E  expressed by  

( ) ( ) ( ) 2
, , 1 10 , 1

1
2p k k k kk kc x t x t+ ++= −  E                   (3) 

( )0 0x t =  and  ( )12 0x t = ,  0,1,2,...,11,12k = . 
The total potential energy ,chainpE  of one chain from the 

representative part of the mZP net for 0 1α< ≤  has the form 

( ) ( ) ( )
12 12 2

,chain , , 1 10 , 1
0 0

1
2

k k

p p k k k kk k
k k

c x t x t
= =

+ ++
= =

= = −  ∑ ∑E E (4) 

  Potential energy of the representative part of the mZP net 
includes the potential energy of all 4 chains from the 
representative part of the mZP net, as well as the potential 
energy of SLFOE elements that connect ZP molecules and 
surface of the oocyte. Each such element is oriented in the 
radial direction. 

Using independent generalized coordinates of mass 
particles in the representative part of the mZP net in the 
circular direction ( ),k ju t , in the meridian direction ( ),k jv t  and 
in the radial direction ( ),k jw t , and taking restrictions of the 

degrees of freedom into account, the total potential energy of 
the representative part of the mZP spherical net (Fig. 2) 

,Repr. part,0 1p α< ≤E  could be written as expressed as  
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E



                   (5) 

subjected to the following boundary conditions in chains: 
( ) 0,0 =tu j , ( ) 0,12 =tu j , ( ) 0,0 =tv j

 and ( ) 0,12 =tv j , where  k 
denotes the order of a mZP molecule in the corresponding 
chain, while  j  labels the order of chain in the representative 
part of the mZP net (1 and 3 are the chains in the circular 
direction, and 2 and 4 are the chains in the meridian direction).  

Relationship (5) represents the density of potential energy 
calculated on the surface element dS  of the middle spherical 
surface of Zona Pelucide corresponding to the representative 
part of the mZP.  

The generalized Rayleigh function of the energy dissipation 
of a viscoelastic fractional order chain chainΦ  for one chain 
from the representative part of the mZP net has the form: 

( ) ( ) ( )
12 2

chain 10 1 , 1
0

1
2

k

t k kk k
k

c D x t x tα
α

=

+< < +
=

Φ = −  ∑ .             (6) 

Applying the generalized Rayleigh function of viscoelastic 
fractional order element energy dissipation chainΦ  to the 
whole representative part of the mZP net, it is possible to 
obtain the following expression in terms of independent 
generalised coordinates:  
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                     (7) 

subjected to the following boundary conditions of chains: 
( )0, 0t jD u tα   = 

, ( )12, 0t jD u tα   = 
, ( )0, 0t jD v tα   = 

, ( )12, 0t jD v tα   = 
. 

The total power of work of the fractional order dissipative 
forces of the whole mZP net could be written as 

 

Repr. part
S

dSΦ = Φ∫∫ .                                  (8) 

III. KINETIC ENERGY OF THE REPRESENTATIVE PART OF THE 

MZP NET  

    According to the model under consideration, each ZP 
molecule can move in two directions: in the radial and in the 
direction of the chain, circular or meridian. Only knot 
molecules could move in all three directions (Fig. 3) with the  
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Figure 3. Component displacements and velocities in the 
circular, meridian and radial directions for knot molecules  
 
velocities ( )tu jk ,

  ( )tv jk ,  and ( )tw jk , , respectively, in the 
circular,  meridian and radial directions. 

Expression for the kinetic energy Kin,chain, jE ,  j=1,3 of non 
knot molecules in the circular direction is: 

 

( ) ( )
11 2 2

Kin, Circ.chain, , , ,
1
3
9

1
2

k

j k j k j k j
k
k
k

m u t w t
=

=
≠
≠

   = +   ∑E  

, 3,1=j .        (9) 

Expression for kinetic energy Kin mer,chain, jE ,  j=2,4 for non 
knot molecules in the meridian direction is: 

 

( ) ( )
11 2 2

Kin mer,chain, , , ,
1
3
9

1
2

k

j k j k j k j
k
k
k

m v t w t
=

=
≠
≠

   = +   ∑E  

, 2,4j =  (10)  

Expression for kinetic energy Kin,chain, jE , 1,2,3,4j =  of the 
first knot molecule in all three directions has in the form: 

 
( ) ( ) ( )2 2 2

Kin,knot,1 3,1 3,1 3,4 3,4 1,1 1,1

3,1 3,4 1,1

1 1 1
2 2 2

m u t m v t m w t

m m m

     = + +     

= =

E    



.         (11)

  
Similar expressions for kinetic energy could be written for 

other knot molecules in the representative part of the mZP net.  
Summing the kinetic energy of all material particles in all 4 
chains in the representative part of the mZP net, the total 
kinetic energy has the following form: 

 

( ) ( ) ( )
3 4 1111 11 112 2 2
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 (12) 

 
 Masses of the knot molecules have following denotations: 

1,14,31,3
~mmm == , 

2,22,31,9
~mmm == , 

3,33,92,9
~mmm == , 

4,44,93,3
~mmm == , for the reason that each knot mass particle 

belongs to  two chains, circular and meridian, at the same 
time. 

Use the extended system of Lagrange equations of the 
second kind (see Refs. [16] and [20]) for the fractional order 
system  and generalized coordinates in all three directions for 

the boundary conditions ( )0, 0ju t =  and ( )12, 0ju t =  in the 
circular and ( ) 0,0 =tv j

 and ( ) 0,12 =tv j
 in the meridian direction: 

 

( ) ( ) ( ) ( )
Kin,Repr. Kin,Repr. p,Repr. part, 0 Repr.part

, , , ,
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d
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E E E
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 1,2,3,...,11k = , 3,1=j , 0 1α< ≤                                   (13) 
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, , , ,
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d
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 11,...,3,2,1=k , 4,2=j ,                                      (14) 
 

( ) ( ) ( ) ( )
Kin,Repr. Kin,Repr. p,Repr. part Repr. part

, , , ,

0
k j k j k j t k j

d
dt w t w t w t D w tα
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∂ ∂ ∂  ∂    

E E E


 

 9,3,11,...,3,2,1, ≠≠= kkjk                               (15) 
 
Using (13)-(15), as well as expressions for kinetic and 

potential energy and general function of fractional order 
energy dissipation of  the representative part of the mZP 
spherical net, we can obtain a system of ordinary differential 
equations of the fractional order 0 1α< ≤ in the following 
form: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
, , , 1, 1, ,0 1, , 0 , 1 ,

, 1, 1, ,0 1 1, , 0 , 1 , 0

k j k j k j k j k j k jk k j k k j

t k j k j t k j k jk k j k k j

m u t c u t u t c u t u t

c D u t u t c D u t u tα α
α α

− +− +

− +< ≤ − < ≤ +

   + − − −   

   + − − − =   

           

11,...,3,2,1=k , 3,1=j                                                             (16) 
   

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
, , , 1, 1, ,0 1, , 0 , 1 ,

, 1, 1, ,0 1 1, , 0 , 1 , 0
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α α

− +− +
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  11,...,3,2,1=k , 4,2=j                                    (17) 
   

( ) ( ) ( ) ( ) ( ), , , ,0 , , 0 1 , 0k j k j k j t k jk j j k jm w t c w t c D w tα
α< ≤  + + =   

     

  9,3,11,...,3,2,1, ≠≠= kkjk                                  (18) 
 
 The set of ordinary fractional order differential equations 

(16)-(18) consists of three independent subsystems of the 
fractional order. Both subsystems (16) and (17) are two 
independent subsystems of the fractional order each. Each of 
the last mentioned subsystems corresponds to one chain in the 
representative part of the mZP net 

 
( ) ( ) [ ] ( ) [ ]

( ) [ ] ( ) [ ]
1 10 1, 0 , 1

1 10 1 1, 0 , 1 0

k k k k k kk k k k

t k k t k kk k k k

m x t c x x c x x

c D x x c D x xα α
α α

− +− +

− +< ≤ − < ≤ +

+ − − −

+ − − − =

      (19) 

11,...,3,2,1=k  

( ) ( ) [ ] ( ) [ ]

( ) [ ] ( ) [ ]
1 10 1, 0 , 1

1 10 1 1, 0 , 1 0

k k k k k kk k k k

t k k t k kk k k k

m y t c y y c y y

c D y y c D y yα α
α α

− +− +

− +< ≤ − < ≤ +

+ − − −

+ − − − =

  (20) 

       1,2,3,...,11k =  
 

   Subsystem (18) could be rewritten in the following form: 
 

( ) ( ) ( ) ( )2 2
, , , ,0 1 , 0k j k j k j t k jk jw t w t D w tα

αω ω < ≤  + + =  
           (21) 

          9,3,11,...,3,2,1, ≠≠= kkjk , 
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where 

 ( )
( )

( )0 , 0 ,2 2
, 0 1 ,

, ,
,k j k j

k j k j
k j k j

c c

m m

α

α

τ
ω ω < ≤= =

 

 

 

.              (22) 

Particular solutions of ordinary fractional order differential 
equations (21), which are equations of only one coordinate 
each and which describe displacements of a fractional order 
oscillator, are known [27]-[31]. According to [27]-[29], 
particular solutions, ( ),cos ,sT t α  and ( ),sin ,sT t α , could be 
written in the following form: 

 

( ) ( ) ( )
( )

( )

2
2 2

,cos 2
0 0

, 1 ,
2 1

m mk sk k k
s s m

k m s

tk
T t t

m k m

α
α

α

ω
α ω

ω α

− −∞

= =

 
= −   Γ + − 

∑ ∑          (23) 

( ) ( ) ( )
( )

( )

2
2 2 1

,sin 2
0 0

, 1 .
2 2

m mk sk k k
s s m

k m s

tk
T t t

m k m

α
α

α

ω
α ω

ω α

− −∞
+

= =

 
= −   Γ + − 

∑ ∑            (24) 

 
  The corresponding particular cases at 1=α  are reduced to 
  
     ( ) ( )

( )

2
1

1
2 42

,cos 11

1, cos ,
4

st
s s sT t e tαω

αα
α ω ω=−

==

 
= + 

 

 

     
( ) ( )

( )

2
1

1
2 42

,sin 11

1, sin .
4

st
s s sT t e tαω

αα
α ω ω=−

==

 
= + 

 

 

      Figures 3 and 4 present two surface modes with the 
difference in phase.  
 

M  
Fig. 3 Main eigen modes of the fractional order:  ( ),cos ,sT t α  
is plotted on the ordinate, time t and α  ( 0 1α< ≤ ) are on two 
abscissa axes.   
 
 

M  
Fig. 4 Main eigen modes of fractional order. ( ),sin ,sT t α  is 
plotted on the ordinate, time t and α ( 0 1α< ≤ ) are on two 
abscissa axes.   
 

     Subsystems (19) and (20) are similar ordinary fractional 
order differential equations. We are going to analyze one 
subsystem written in a matrix form [20]:  
 

{ } { } { }{ } { }0 ,tx x D xα
α+ + =A C C                             (25) 

 

where ( ) nk
njkja ,...,3,2,1

,...,3,2,1
=↓

=→
=A  is the matrix of coefficients of 

system’s mass inertia properties, ( ) nk
njkjc ,...,3,2,1

,...,3,2,1
=↓

=→
=C  is the 

matrix of coefficients of system’s rigidity properties, and 
α

α τ=C C  is the matrix of coefficients of system’s 
viscoelastic fractional order properties.  
    Introduce the modal matrix corresponding to the linear set 
of oscillators (25)   
 

{ }( ) ( ) 1,2,3,...,

1,2,3,...,

k ns s
nk nk s n

K K
↓ =

→ =
= =R

                                     
(26) 

 
and apply modal matrix  R  to A ,  C  and αC , resulting in 
three diagonal matrices 
 

( )A diag ssa′= =R AR ,     ( )C diag ssc′= =R CR , 

( ),C diags sscα
α α τ′= =R C R                       

(27)
 

 and the following coordinate transformation 
  

{ } { }sx ξ= R                   (28) 
 

from the generalized coordinates of the linear system to the 
corresponding eigen coordinates  sξ  ( 1,2,3,...,11)s =  and eigen 
modes.   
 Considering (27) and (28) in equations (29) and (30), we 
obtain subsystems of independent fractional order differential 
equations in the following form: 
 
 

( )
[ ]2 2 0

s s

α
s s t sD

α
ξ ω ξ ω ξ+ + =

    ( 1,2,3,...,11)s =               (29) 
 
The form of ordinary fractional order differential equations 

(29) is the same as in (21), and thus their particular solutions 
are similar to (23) and (24) but with the corresponding 
characteristic eigen values, 2

,k jω  and ( )
2
0 1 ,k jαω < ≤ .  

IV. CONCLUSION 
The energy state of the mouse zona pellucida before and 

after fertilization has been analyzed via the created discrete 
fractional order spherical net model based on the fractional 
derivative Voigt model of viscoelasticity. According to this 
model, after fertilization until the stage of morula the modulus 
of elasticity decreases [8], and these stages could be modeled 
as non-conservative systems with viscoelastic properties. In 
the stage when the mZP has the highest viscosity, its energy is 
minimal. We can speculate that this minimum of mZP energy 
is essential (from the mechanical point of view) for embryo to 
escape from this structure and implant into the uterus. 
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